Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements.

نویسندگان

  • Dora E Angelaki
  • J David Dickman
چکیده

Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Do extraocular motoneurons encode head velocity during head-restrained versus head-unrestrained saccadic and smooth pursuit movements?

Microstimulation experiments in the superior colliculus1 and single-unit recordings from its target, the premotor saccadic burst neurons2 (SBNs, located in the paramedian pontine reticular formation), have shown that the saccadic burst generator encodes head as well as eye movements during head-unrestrained gaze shifts. There is also evidence suggesting that premotor circuits likely encode eye ...

متن کامل

Common inhibitory mechanism for saccades and smooth-pursuit eye movements.

The premotor pathways subserving saccades and smooth-pursuit eye movements are usually thought to be different. Indeed, saccade and smooth-pursuit eye movements have different dynamics and functions. In particular, a group of midline cells in the pons called omnipause neurons (OPNs) are considered to be part of the saccadic system only. It has been established that OPNs keep premotor neurons fo...

متن کامل

Selectivity of macaque ventral intraparietal area (area VIP) for smooth pursuit eye movements.

In the posterior parietal cortex (PPC) of the macaque, spatial and motion signals arising from different sensory signals converge. One of the functional subregions within the PPC, the ventral intraparietal area (VIP), is thought to play an important role for the multisensory encoding of self- and object motion. In the present study we analysed the activity of area VIP neurons related to smooth ...

متن کامل

Brain stem pursuit pathways: dissociating visual, vestibular, and proprioceptive inputs during combined eye-head gaze tracking.

Eye-head (EH) neurons within the medial vestibular nuclei are thought to be the primary input to the extraocular motoneurons during smooth pursuit: they receive direct projections from the cerebellar flocculus/ventral paraflocculus, and in turn, project to the abducens motor nucleus. Here, we recorded from EH neurons during head-restrained smooth pursuit and head-unrestrained combined eye-head ...

متن کامل

Vestibular-Related Frontal Cortical Areas and Their Roles in Smooth-Pursuit Eye Movements: Representation of Neck Velocity, Neck-Vestibular Interactions, and Memory-Based Smooth-Pursuit

Smooth-pursuit eye movements are voluntary responses to small slow-moving objects in the fronto-parallel plane. They evolved in primates, who possess high-acuity foveae, to ensure clear vision about the moving target. The primate frontal cortex contains two smooth-pursuit related areas; the caudal part of the frontal eye fields (FEF) and the supplementary eye fields (SEF). Both areas receive ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 7  شماره 

صفحات  -

تاریخ انتشار 2003